Extending Scaled-Interaction Adaptive-Partitioning QM/MM to Covalently Bonded Systems

02 March 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Quantum mechanics/molecular mechanics (QM/MM) is the method of choice for atomistic simulations of large systems that can be partitioned into active and environmental regions. Adaptive-partitioning (AP) methods extend the applicability of QM/MM, allowing active zones to change during the simulation. AP methods achieve continuous potential energy surface (PES) by introducing buffer regions in which atoms have both QM and MM characters. Most of the existing AP-QM/MM methods require multiple QM calculations per time step, which can be expensive for systems with many atoms in buffer regions. Although one can lower the computational cost by grouping atoms into fragments, this may not be possible for all systems, especially for applications in covalent solids. The SISPA method [J. Chem. Theory Comput. 2017, 13, 2342] differs from other AP-QM/MM methods by only requiring one QM calculation per time step, but it has the flaw that the QM charge density and wavefunction near the buffer/MM boundary tend to those of isolated atoms/fragments. Besides, regular QM/MM methods for treating covalent bonds cut by the QM/MM boundary are incompatible with SISPA. Due to these flaws, SISPA in its original form cannot treat covalently bonded systems properly. In this work, we show that a simple modification to the SISPA method improves the treatment of covalently bonded systems. We also study the effect of correcting the charge density in SISPA by developing a density-corrected pre-scaled algorithm. We demonstrate our methods with simple molecules and bulk solids.

Keywords

Adaptive partitioning
QM/MM MD simulations
bulk solids
Covalently bonded systems

Supplementary materials

Title
Description
Actions
Title
supplemental
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.