Nanotubular Titanium Oxynitride with an Ultra-Low Iridium Loading as a High-Performance Oxygen-Evolution-Reaction Thin-Film Electrode

28 May 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


The present study targets one of the grand challenges of electrochemical hydrogen production: a durable and cost-effective oxygen-evolution catalyst. We present a thin-film composite electrode with a unique morphology and an ultra-low loading of iridium that has extraordinary electrocatalytic properties. This is accomplished by the electrochemical growth of a defined, high-surface-area titanium oxide nanotubular film followed by the nitridation and effective immobilization of iridium nanoparticles. The applicative relevance of this production process is justified by a remarkable oxygen-evolution reaction (OER) activity and high stability. Due to the confinement inside the pores and the strong metal-support interaction (SMSI) effects, the OER exhibited a higher turnover. The high durability is achieved by self-passivation of the titanium oxynitride (TiON) surface layer with TiO2, which in addition also effectively embeds the Ir nanoparticles, while still keeping them electrically wired. An additional contribution to the enhanced durability comes from the nitrogen atoms, which according to our DFT calculations reduce the tendency of the Ir nanoparticles to grow. We also introduce an advanced electrochemical characterization platform for the in-depth study of thin-film electrodes. Namely, the entire process of the TiON-Ir electrode’s preparation and the electrochemical evaluation can be tracked with scanning electron microscopy, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) at identical locations. In general, the novel experimental approach allows for the unique morphological, structural and compositional insights into the preparation and electrocatalytic performance of thin films, making it useful also outside electrocatalysis applications.


Oxygen Evolution Reaction
TiON-Ir-nanotube catalyst
Thin-film electrode
Titanium oxynitride nanotubular support
TiON-Ir catalyst
Iridium nanoparticles

Supplementary materials

Nanotubular Titanium Oxynitride with an Ultra-Low Iridium Loading as a High-Performance Oxygen-Evolution-Reaction Thin-Film Electrode Supporting Information


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.