Frequency Selective Phase-Optimized Recoupling for Protons in Ultra-Fast Solid-State Magic-Angle Spinning NMR

22 May 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

We propose a new category of homonuclear frequency-selective recoupling methods for protons under ultra-fast MAS ranging from 40 kHz to 150 kHz. The methods, named as Selective Phase-optimized Recoupling (SPR) are simple in the form with defined phase schemes and RF amplitudes. SPR are robust to RF variations and efficient in frequency-selective recoupling. We demonstrated that SPR can provide a sensitivity gain of ~ 3 over the widely-used RFDR for selective 1HN-1HN correlations under 150 kHz MAS using a protonated tripeptide N-formyl-Met-Leu-Phe (fMLF). Moreover, SPR requires small ratios (~ 0.5) of RF power with respect to MAS frequency, making it perfect to probe long-range 1H-1H distance under ultra-fast MAS up to 150 kHz.

Keywords

Solid State NMR Spectroscopy
Ultra-fast Magic Angle Spinning
Frequency selective
Homonuclear dipolar recoupling
Proton detection
distance restraints

Supplementary materials

Title
Description
Actions
Title
SPR SI 20200522
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.