In silico Drug Repurposing for COVID-19: Targeting SARS-CoV-2 Proteins through Docking and Quantum Mechanical Scoring

18 May 2020, Version 2
This content is a preprint and has not undergone peer review at the time of posting.


In December 2019, an infectious disease caused by the coronavirus SARS-CoV-2 appeared in Wuhan, China. This disease (COVID-19) spread rapidly worldwide, and on March 2020 was declared a pandemic by the World Health Organization (WHO). Today, more than 4.7 million people have been infected, with almost 320,000 casualties, while no vaccine nor antiviral drug is in sight. The development of a vaccine might take at least a year, and even longer for a novel drug; thus, finding a new use to an old drug (drug repurposing) could be the most effective strategy. We present a high-throughput docking approach using a novel quantum mechanical scoring for screening a chemical library of ~11,500 molecules built from FDA-approved drugs and compounds undergoing clinical trials, against three SARS-CoV-2 target proteins: the spike or S-protein, and two proteases, the main protease and the papain-like protease. The S-protein binds directly to the Angiotensin Converting Enzyme 2 receptor of the human host cell surface, while the two proteases process viral polyproteins. Following the analysis of our structure-based virtual screening, we propose several structurally diverse compounds that could display antiviral activity against SARS-CoV-2. Clearly, these compounds should be further evaluated in experimental assays and clinical trials to confirm their actual activity against the disease. We hope that these findings may contribute to the rational drug design against COVID-19.


Molecular Docking
Quantum Mechanical Scoring
Drug Repurposing
High-Throughput Docking


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.