In Silico Pharmacophore Study and Structural Optimization of Nafamostat Yield Potentially Novel Transmembrane Protease Serine 2 (TMPRSS2) Inhibitors Which Block the Entry of SARS-CoV-2 Virus into Human Cells

21 May 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


The past 6 months since December 2019 were marked by the COVID-19 pandemic caused from the Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Due to the urgent state worldwide, many efforts have been directed on repurposing approved drugs to facilitate the discovery of effective therapies. In this work, I employ molecular docking (in silico) as an approach to study the intermolecular interactions between Nafamostat mesylate – an approved anticoagulant drug, and transmembrane serine protease 2 (TMPRSS2) which is crucial for coronaviruses to enter host cells. Furthermore, structural optimization of Nafamostat is performed using pharmacophoric approach which indicates some small molecules as potentially effective TMPRSS2 inhibitors and pharmaceutical candidates for COVID-19 pandemic.


TMPRSS2 inhibitors
drug optimization
molecular docking

Supplementary materials

Supplementary information


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.