Feature-Based Molecular Networking Analysis of the Metabolites Produced by in vitro Solid-State Fermentation Reveals Pathways for the Bioconversion of Epigallocatechin Gallate

21 April 2020, Version 2

Abstract

Flavan-3-ol B-ring fission derivatives (FBRFDs) are secondary metabolites that contribute to the unique properties of fermented dark teas. However, the FBRFD precursors and biochemistry are unclear. Fungal strains cultured from Fuzhuan brick tea (FBT) were incubated in an in vitro solid-state fermentation system containing β-cyclodextrin-embedded epigallocatechin gallate (EGCG), a potential precursor of FBRFDs. The produced metabolites were analyzed through a combination of targeted chromatographic isolation, non-targeted spectroscopic identification, and Feature-based Molecular Networking (FBMN) in the Global Natural Products Social Molecular Networking (GNPS) platform. Dihydromyricetin was identified for the first time, indicating that fungi possess a flavan-3-ol C-ring oxidation pathway. EGCG was verified as the precursor of dihydromyricetin and FBRFDs such as teadenol A and fuzhuanin A. The conversion was driven by the fungi rather than a hygrothermal effect. Isolates from Pezizomycotina showed much stronger abilities to convert EGCG to the B-/C-ring oxidation products than those from Saccharomycotina or Basidiomycota.

Keywords

flavan-3-ol B-ring fission derivatives
FBRFDs
Fuzhuan brick tea
dark teas
solid-state fermentation system
fungi
β-cyclodextrin
β-CD
epigallocatechin gallate
EGCG
Global Natural Products Social Molecular Networking
GNPS
Feature-based Molecular Networking
FBMN
dihydromyricetin
oxidation
bioconversion
C-ring
teadenol A
fuzhuanin A
hygrothermal effect
Pezizomycotina

Supplementary materials

Title
Description
Actions
Title
Figure 1
Description
Actions
Title
figure 2
Description
Actions
Title
figure 3
Description
Actions
Title
Figure 4
Description
Actions
Title
Figure 5
Description
Actions
Title
Figure 6
Description
Actions
Title
Figure 7
Description
Actions
Title
Figure 8
Description
Actions
Title
SI-2 ChemRxiv
Description
Actions
Title
TOC Graphic
Description
Actions
Title
SI-1 ChemRxiv
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.