Poly(alkylene 2,5-Furanoate)s Thin Films: Morphology, Crystallinity and Nanomechanical Properties

15 May 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Poly(alkylene 2,5-furanoate)s are considered as the most attractive and interesting alternatives to replace oil-based terephthalic polymers. These furan-based polyesters can be synthesized using fully bio-based synthetic strategies, allowing to reduce the environmental impact of plastics. At the same time, these polymers have shown outstanding thermal, mechanical and gas-barrier properties. All these results envisage their industrial use in the near future. Now, considering the downscaling of the products’ size towards the nanometer scale, we present a study of the morphology and nanomechanical properties of poly(alkylene 2,5-furanoate) thin films. Using Atomic Force Microscopy, we report the development of nanostructures upon crystallization, following different thermal treatments, for thin films with thicknesses below 200 nm. Moreover, we studied the impact of crystal growth in the nanomechanical properties of these materials. We found that the polymer thin films preserve their excellent mechanical response even in the confined geometry, as proved by the Young’s moduli values close to the GPa, accompanied by high surface stiffness, and low indentation depths. The poly(alkylene 2,5-furanoate) thin films were found to have nanomechanical properties comparable to those of the oil-based poly(ethylene terephthalate), a further evidence that in the future they could replace traditional polymers in several applications.


poly(alkylene 2,5-furanoate)s
Thin films
Atomic Force Microscopy imaging
Atomic Force Microscopy nanoindentation experiments
Atomic Force Microscopy
Polymer Nanostructures
Polymer Crystallization
Nanomechanical Properties
Force Spectroscopy
2,5-Furancarboxylic acid


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.