An Alternative Kinetic Model of the Iodide-Iodate Reaction for Its Use in Micromixing Investigations

15 May 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The Villermaux-Dushman method, one of the most extensively used test reaction systems for micromixing characterization, has been widely criticized for years due to uncertainties regarding the incomplete dissociation of sulfuric acid and the proposed kinetic study by Guichardon et al. In this work, a renewed study of the kinetics of the iodide-iodate reaction is presented, using perchloric acid to avoid issues concerning incomplete acid dissociation. The experimental results are in good agreement with the fifth order rate law for the iodide-iodate reaction. The reaction rate coefficient strongly depends on the ionic strength and can be modeled with a Davies-like equation. When implemented in the incorporation model, the kinetic model presented in this study can be used to estimate micromixing times that are in line with the theoretical engulfment time. This is observed in two different reactors with low and high intensity of mixing: an unbaffled stirred vessel and a rotor-stator spinning disc reactor. The results from the latter are also compared with the second Bourne reaction, giving very similar micromixing times. The use of sulfuric acid in combination with the kinetic model from Guichardon et al. also provides micromixing times of the same order of magnitude; presumably their kinetic model indirectly accounts for the second proton dissociation rate in the overall reaction rate coefficient. The kinetic model presented in this study in combination with perchloric acid is suggested as an alternative to characterize micromixing behavior.

Keywords

test reactions
micromixing
modeling
kinetics

Supplementary materials

Title
Description
Actions
Title
supportive graph
Description
Actions
Title
supportive graph 2
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.