Structure Based Drug Repurposing Through Targeting Nsp9 Replicase and Spike Proteins of SARS-CoV-2

14 May 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Due to unavailability of therapeutic approach for the novel coronavirus disease (COVID-19), the drug repurposing approach would be the fastest and efficient way of drug development against this deadly disease. We have applied bioinformatics approach for structure-based drug repurposing to identify the potential inhibitors through drug screening, molecular docking and molecular dynamics against non-structural protein 9 (Nsp9) replicase and spike proteins of the SARS-CoV-2 from the FDA approved drugs. We have performed virtual screening of 2000 FDA approved compounds including antiviral, anti-malarial, anti-parasitic, anti-fungal, anti-tuberculosis and active phytochemicals against Nsp9 replicase and spike proteins of SARS-CoV-2. Molecular docking was performed using Autodock-Vina. Selected hit compounds were identified based on their highest binding energy and favourable ADME profile. Notably, Conivaptan, an arginine vasopressin antagonist drug exhibited highest binding energy (-8.4 Kcal/mol) and maximum stability with the amino acid residues present on the active site of Nsp9 replicase. Additionally, Tegobuvir, a non-nucleoside inhibitor of hepatitis C virus exhibited maximum stability with highest binding energy (-8.1 Kcal/mol) on the active site of spike protein. Molecular docking scores were further validated with the molecular dynamics using Schrodinger, which supported strong stability of ligands with proteins at their active site through water bridges, hydrophobic interactions, H-bond. Overall, our findings highlight the fact that Conivaptan and Tegobuvir could be used to control the infection and propagation of SARS-CoV-2 targeting Nsp9 replicase and spike protein, respectively. Moreover, in vitro and in vivo validation of these findings will be helpful in bringing these molecules at the clinical settings.

Keywords

COVID-19
SARS-CoV-2
Nsp9 replicase
spike protein
molecular docking
drug designing
drug repurposing

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.