Effects of Non-Electrostatic Intermolecular Interactions on the Phase Behavior of pH-Sensitive Polyelectrolyte Complexes

30 April 2020, Version 2

Abstract

Polyelectrolyte complexes (PECs) offer enormous material tunability and desirable functionalities, and consequently have found broad utility in biomedical and materials industries. Poly(acrylic acid) (PAA) and poly(allylamine hydrochloride) (PAH) are one of the most commonly used pairings to form PECs. However, various aspects of the phase behavior of PAA-PAH complexes have not been sufficiently quantified. We present a comprehensive experimental study depicting the binodal phase boundaries for the PAA-PAH complexes prepared in acidic, neutral and basic conditions using thermogravimetric analysis, turbidimetry and optical microscopy. In neutral and basic conditions, phase behaviors of the complexes were largely similar to each other and followed general expectations of PEC phase behavior, except for unusually high salt resistance with stable complexes observed up to 4 M NaCl concentrations. In acidic conditions, a remarkably different phase behavior of the PAA-PAH complexes was observed. The polymer content in the complex phase increased initially followed by an expected decrease as salt was added to the complexes. This behavior may result from a combination of associative phase separation of PAA and PAH chains, influenced by electrostatic interactions, and segregative phase separation which can be ascribed to the influence of a combination of the hydrophobic interactions of the aliphatic polymer backbone and the interpolymer hydrogen bonding of un- ionized acrylic monomer units. Our systematic investigations detailing these discrepancies in the PAA-PAH phase behavior are expected to clarify the inconsistencies among the reports in the literature and inform the materials design strategies for practical use of the PAA-PAH complexes and multilayer assemblies.

Content

Supplementary materials

SI Lu PAAPAH Phasebehavior submitted

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.