Understanding the Diversity of the Metal-Organic Framework Ecosystem

07 May 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


By combining metal nodes and organic linkers one can make millions of different metal-organic frameworks (MOFs). At present over 90,000 MOFs have been synthesized and there are databases with over 500,000 predicted structures. This raises the question whether a new experimental or predicted structure adds new information. For MOF-chemists the chemical design space is a combination of pore geometry, metal nodes, organic linkers, and functional groups, but at present we do not have a formalism to quantify optimal coverage of chemical design space. In this work, we show how machine learning can be used to quantify similarities of MOFs. This quantification allows us to use techniques from ecology to analyse the chemical diversity of these materials in terms of diversity metrics. In particular, we show that this diversity analysis can identify biases in the databases, and how such bias can lead to incorrect conclusions. This formalism provides us with a simple and powerful practical guideline to see whether a set of new structures will have the potential for new insights, or constitute a relatively small variation of existing structures.


Machine learning
Metal-organic frameworks
carbon capture
methane storage
material design

Supplementary materials

si mof diversity


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.