Diagonal Born-Oppenheimer Corrections to the Ground Electronic State Potential Energy Surfaces of Ozone: Improvement of Ab Initio Vibrational Band Centers for the 16O3, 17O3 and 18O3 Isotopologues

07 May 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Mass-dependent diagonal Born-Oppenheimer corrections (DBOC) to the ab initio electronic ground state potential energy surface for tseveral isotopologues of the ozone molecule are reported for the first time. The comparison with experimental band centers shows a significant improvement of the accuracy with respect to the best Born-Oppenheimer (BO) ab initio calculations reducing the total root-mean-squares (calculated - observed) deviations by about factor of two. For the set of 16O3 vibrations up to five bending and four stretching quanta, the mean (calculated - observed) deviations drop down from 0.7 cm-1 (BO) to about 0.1 cm-1, with the most pronounced improvement seen for bending states and for mixed bend-stretch polyads. In case of bending band centers directly observed under high spectral resolutions, the errors are reduced by more than order of magnitude from observed levels, approaching nearly experimental accuracy. New sets of ab initio vibrational states can be used for improving spectroscopic effective models for analyses of observed high-resolution spectra, particularly in cases of accidental resonances with ,,dark'' states requiring accurate theoretical predictions.

Keywords

DBOC
Ozone
ab initio spectroscopic calculations
band centers
Vibrational Spectroscopy
Born-Oppenheimer approximation
multireference configuration interaction level
Multireference Calculations

Supplementary materials

Title
Description
Actions
Title
Supplement
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.