In Search for Effective and Safe Drugs Against SARS-CoV-2: Part II] the Role of Selected Salts and Organometallics of Copper, Zinc, Selenium, and Iodine Food Supplements

05 May 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Three organometallics and three inorganic food supplements were selected, and their binding to specific peptide sequences of the coronavirus S-protein: ACE2 interface-drug binding adduct were computed. The chosen molecules located themselves to achieve geometries of minimum energy resulting in limiting viral recognition of the host cells or disturbing the host-virus interactions. Electrophilicity and nucleophilicity indices, based on the HOMO – LUMO frontier orbitals, were successfully used to explain the simulation results. Zinc and copper-supplements act as electron donors (nucleophiles) towards the ACE2 (electrophile), whereas the S protein remains inert. Molecular iodine acts as a strong electron sink in all of its unstable adducts with the ACE2, or the S protein, and in its adduct with both. Iodine is a stand-in as an electron shield to the ACE2. Currently, exploiting iodine has not been attempted, and it has been forgotten; while it has been used successfully in the treatment of the Spanish flu that started early 1918 and killed 30 million people. The results obtained strongly suggest the beneficial use of iodine. Selenodiglutathione exhibits strong electrophilic property and turns the S protein into an electron sink virus in the presence of ACE2, which behaves like an electron donor. Contrary to zinc gluconate and iodine, the presence of selenomethionine, copper sulfate, selenodiglutathione, or sodium selenite strengthens the ACE2 – S protein interaction. The results reported indicate the association of common food supplements to offer protection and/or treatment against coronavirus S-protein COVID-19. These findings indicate also that these simple methods could help with the fight against COVID-19.


Viral S protein
Food supplements
Frontier orbitals
Reactivity indices
Binding energy


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.