Towards Reversible and Moisture Tolerant Aprotic Lithium-Air Batteries

05 May 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The development of moisture-tolerant, LiOH-based non-aqueous Li-O2 batteries is a promising route to bypassing the inherent limitations caused by the instability of their typical discharge products, LiO2 and Li2O2. The use of the I-/I3- redox couple to mediate the LiOH-based oxygen reduction and oxidation reactions has proven challenging to develop due to the multiple reaction paths induced by the oxidation of I- on cell charging. In this work we demonstrate a reversible LiOH-based Li-O2 battery cycling through a 4 e-/O2 process with low charging overpotential (below 3.5 V vs Li/Li+) by introducing an ionic liquid to a glyme-based electrolyte containing LiI and water. The addition to the ionic liquid increases the oxidizing power of I3-, shifting the charging mechanism from IO-/IO3- formation to O2 evolution

Keywords

Batteries
Li-Air

Supplementary materials

Title
Description
Actions
Title
TOC
Description
Actions
Title
TOC
Description
Actions
Title
TOC
Description
Actions
Title
SI Towards reversible and moisture tolerant aprotic lithium-air batteries
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.