Designing Singlet Fission Candidates from Donor-Acceptor Copolymers

27 April 2020, Version 2
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Singlet Fission (SF) has demonstrated significant promise for boosting the power conversion efficiency (PCE) of solar cells. Traditionally, SF is targeted as an intermolecular process, however its dependence on crystal packing makes molecular design difficult. In contrast, intramolecular SF (iSF) enables the exploration of tunable bi-chromophoric systems following well-defined structure-property relationships. In this work, we propose a set of parameters to screen conjugated donor-acceptor copolymer candidates with potential iSF behaviour. We focus our analysis on the E(S1)>2E(T1) thermodynamic condition and on the appropriate charge transfer (CT) character of S1. We map the CT character with respect to the frontier molecular orbital (FMO) energies of the constituent monomers, providing a cost-effective protocol for an accelerated screening of promising iSF donor-acceptor pairs, while minimizing the number of computations. These parameters are applied to a chemically diverse, curated library of 81 truncated dimers of synthetically feasible donor-acceptor copolymers. From our dataset, four candidates are flagged for iSF, two of which were previously experimentally reported. This protocol is envisioned to be scaled up for the high-throughput screening of large databases of donor-acceptor dimers for the design and identification of conjugated polymers capable of iSF.

Keywords

Singlet Fission
Conjugated Polymers
Computational Screening

Supplementary materials

Title
Description
Actions
Title
ESI
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.