Predicting the Effect of Dopants on CO2 Adsorption on Transition Metal Carbides: Case Study on TiC (001)

04 May 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Previous work has shown that doping the TiC(001) surface with early transition metals significantly affects CO2 adsorption and activation which opens a possible way to control this interesting chemistry. In this work we explore other possibilities which include non-transition metals elements (Mg, Ca, Sr, Al, Ga, In, Si, Sn) as well as late transition metals (Pd, Pt, Rh, Ir) and lanthanides (La, Ce) often used in catalysis. Using periodic slab models with large supercells and state-of-the-art density functional theory (DFT) based calculations, we show that, in all the studied cases, CO2 appears as bent and, hence, activated. However, the effect is especially pronounced for dopants with large ionic crystal radii. These can increase desorption temperature by up to 230K, almost twice the value predicted when early transition metals are used as dopants. However, a detailed analysis of the results shows that the main effect does not come from electronic structure perturbations but from the distortion that the dopant generates into the surface atomic structure. A simple descriptor is proposed that would allow predicting the effect of the dopant on the CO2 adsorption energy in transition metal carbide surfaces without requiring DFT calculations.



Supplementary materials



Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.