TorchANI: A Free and Open Source PyTorch Based Deep Learning Implementation of the ANI Neural Network Potentials

04 May 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


This paper presents TorchANI, a PyTorch based software for training/inference
of ANI (ANAKIN-ME) deep learning models to obtain potential energy surfaces and
other physical properties of molecular systems. ANI is an accurate neural network
potential originally implemented using C++/CUDA in a program called NeuroChem.
Compared with NeuroChem, TorchANI has a design emphasis on being light weight,
user friendly, cross platform, and easy to read and modify for fast prototyping, while
allowing acceptable sacrifice on running performance. Because the computation of
atomic environmental vectors (AEVs) and atomic neural networks are all implemented
using PyTorch operators, TorchANI is able to use PyTorch’s autograd engine to automatically compute analytical forces and Hessian matrices, as well as do force training
without additional codes required.


Machine Learning


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.