In Situ Visualizing the Recognition Between Proteins and Platinum-Damaged DNA in Single-Cells by Correlated Optical and Secondary Ion Mass Spectrometric Imaging

20 April 2020, Version 3
This content is a preprint and has not undergone peer review at the time of posting.


In situ visualization of the recognition and interaction between proteins and drug damaged DNA at single cell level is highly important for understanding the molecular mechanism of action of DNA targeting drugs, yet a great challenge. We herein report a novel approach, termed as correlated optical and secondary ion mass spectrometric imaging (COSIMSi), for exploring the recognition between proteins and cisplatin-damaged DNA in single cells. Genetically encoded EYFP-fused HMGB1, an in vitro well-known specific binder of cisplatin-damaged DNA, and dye-stained DNA, and cisplatin were mapped by LSCM and ToF-SIMS imaging, respectively. The LSCM and SIMS images were aligned with aiding of an addressable silicon wafer to generate fused images, in which the co-localization of the fluorescence and MS signals indicated the formation of HMGB1-Pt-DNA ternary complexes in a dose- and time-dependent manner. In contrast, COSIMSi showed that little HMGB1(F37A)-Pt-DNA complex was produced under the same conditions. Moreover, we demonstrated for the first time that cisplatin lesion on DNA prevented a DNA-binding protein Smad3 from interacting with DNA. These results verify that the COSIMSi is an effective and straightforward tool for in situ visualization of recognition and interaction between proteins and specific damaged DNA in single cells.


Correlated Imaging
Mass Spectrometry Imaging
Optical Imaging
DNA-Protein Recognition

Supplementary materials

Visualization of Protein-DNA Interactions in Single Cells-SI


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.