Virtual Screening of Curcumin and Its Analogs Against the Spike Surface Glycoprotein of SARS-CoV-2 and SARS-CoV

20 April 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

COVID-19, a new pandemic caused by SARS-CoV-2, was first identified in 2019 in Wuhan, China. The novel corona virus SARS-CoV-2 and the 2002 SARS-CoV have 74 % identity and use similar mechanisms to gain entry into the cell. Both the viruses enter the host cell by binding of the viral spike glycoprotein to the host receptor, angiotensin converting enzyme 2 (ACE2). Targeting entry of the virus has a better advantage than inhibiting the later stages of the viral life cycle. Potential inhibitors of SARS-CoV and SARS-CoV-2 Spike proteins was determined using molecular docking studies. Curcumin, a naturally occurring phytochemical in Curcuma longa, is known to have broad pharmacological properties. In the present study, curcumin and its derivatives were docked, using Autodock 4.2, onto the 6CRV and 6M0J to study their capability to act as inhibitors of the spike protein and thereby, viral entry. The curcumin and its derivatives displayed binding energies, ΔG, ranging from -14.18 to -4.04 kcal/mol (6CRV) and -10.01 to -5.33 kcal/mol (6M0J). The least binding energy was seen in bis-desmethoxycurcumin with: ΔG = -14.18 kcal/mol (6CRV) and -10.01 kcal/mol (6M0J). A good binding energy, drug likeness and efficient pharmacokinetic parameters suggest the potential of curcumin and few of its derivatives as SARS-CoV-2 spike protein inhibitors.

Keywords

virtual screening of curcumin analogs on spike protein of SARS-CoV2

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.