[FeFe]-Hydrogenase Maturation: H-Cluster Assembly Intermediates Tracked by Electron Paramagnetic Resonance, Infrared, and X-Ray Absorption Spectroscopy

22 April 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


[FeFe]-hydrogenase enzymes employ a unique organometallic cofactor for efficient and reversible hydrogen conversion. This so-called H-cluster consists of a [4Fe-4S] cubane cysteine-linked to a diiron complex coordinated by carbon monoxide and cyanide ligands and an azadithiolate ligand (adt = NH(CH2S)2). [FeFe]-hydrogenase apo-protein binding only the [4Fe-4S] sub-complex can be fully activated in vitro by the addition of a synthetic diiron site precursor complex ([2Fe]adt,). Elucidation of the mechanism of cofactor assembly will aid in the design of improved hydrogen processing synthetic catalysts. We combined in situ electron paramagnetic resonance, Fourier-transform infrared, and X-ray absorption spectroscopy to characterize intermediates of H-cluster assembly as initiated by mixing of the apo-protein (HydA1) from the green alga Chlamydomonas reinhardtii with [2Fe]adt. The three methods consistently show rapid formation of a complete H-cluster in the oxidized, CO-inhibited state (Hox-CO) already within seconds after the mixing. Moreover, FTIR spectroscopy support a model in which Hox-CO formation is preceded by a short-lived Hred´-CO like intermediate. Accumulation of Hox-CO was followed by CO release resulting in the slower conversion to the catalytically active state (Hox) as well as formation of reduced states of the H-cluster.


Cofactor Assembly
Time-resolved Spectroscopy
Maturation Intermediates

Supplementary materials

Nemeth et al. ESI 2020


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.