Manuscript-C-dots assembly at interface-041020.pdf

13 April 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

We describe a systematic investigation of carbon dots (C-dots) assemblies fabricated at the liquid/air interface because of the surface tension gradient. This gradient is originally created by capillary action and increased by addition of sodium dodecyl sulfate (SDS) surfactant or 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) phospholipid to the surface of C-dots aqueous mixture. The arrangement of carbon dots in liquid bulk phase (before self-assembly) and at the surface region (after self-assembly) was examined by TEM microscopy. The presence of SDS surfactant and POPC phospholipid at the air/water interface induced the C-dots compression. In addition, molecular dynamics simulation was conducted to obtain the structure of C-dots at liquid/vapor interface. The orientation of C-dots is evaluated quantitatively at water/vapor surface by using bivariate analysis.

Keywords

Self-assembly
carbon dots
liquid/air interface
capillary forces
POPC phospholipid
SDS surfactant

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.