Discovery of Acid-Stable Oxygen Evolution Catalysts : High-throughput Computational Screening of Equimolar Bimetallic Oxides

10 April 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Discovering acid-stable, cost-effective and active catalysts for oxygen evolution reaction (OER) is critical since this reaction is bottlenecking many electrochemical energy conversion systems. Current systems use extremely expensive iridium oxide catalysts. Identifying Ir-free or catalysts with reduced Ir-composition has been suggested as goals, but no systematic strategy to discover such catalysts has been reported. In this work, we performed high-throughput computational screening to investigate bimetalic oxide catalysts with space groups derived from those of IrO$_x$, identified promising OER catalysts predicted to satisfy all the desired properties: Co-Ir, Fe-Ir and Mo-Ir bimetallic oxides. We find that for the given crystal structures explored, it is essential to include noble metals to maintain the acid-stability, although one-to-one mixing of noble and non-noble metal oxides could keep the materials survive under the acidic conditions. Based on the calculated results, we provide insights to efficiently perform future high-throughput screening to discover catalysts with desirable properties.


Density Functional Theory Calculations
High-throughput Screening
Water Oxidation Reaction
Oxygen Evolution Reaction
Metal Oxides

Supplementary materials



Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.