In Silico Exploration of Molecular Mechanism and Potency Ranking of Clinically Oriented Drugs for Inhibiting SARS-CoV-2’s Main Protease

31 March 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Currently, the new coronavirus disease 2019 (COVID-19) is a global pandemic without any well calibrated treatment. To inactivate the SARS-CoV-2 virus that causes COVID-19, the main protease (Mpro) that performs key biological functions in the virus has been the focus of extensive studies. With the fast-response experimental efforts, the crystal structures of Mpro of the SARS-CoV-2 virus have just become available recently. Herein, we theoretically investigated the binding mechanism between the Mpro's pocket and various marketed drug molecules being tested in clinics to fight COVID-19 that show promising outcomes. Combining all existing experiment results with our computational ones, we revealed an important ligand-binding mechanism for the Mpro that the binding stability of a ligand inside the Mpro pocket can be significantly improved if the partial ligand occupies the so-called "anchor" site of the Mpro. Along with the high-potent drugs/molecules (such as nelfinavir and curcumin) revealed in this study, the newly discovered binding mechanism paves the way for further optimizations and designs of Mpro's inhibitors with a high binding affinity.


Main protease
Molecular dynamics


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.