A 2D-Covalent Organic Framework with Interlayer Hydrogen Bonding Oriented Through Designed Non-Planarity

30 March 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

We report the synthesis and characterization of a new class of 2D-covalent organic frameworks, called COFamides, whose layers are held together by amide hydrogen bonds. To accomplish this, we have designed monomers with a non-planar structure that arises from steric crowding, forcing the amide side groups out of plane with the COF sheets orienting the hydrogen bonds between the layers. The presence of these hydrogen bonds provides significant structural stabilization as demonstrated by comparison to control structures that lack hydrogen bonding capability, resulting in lower surface area and crystallinity. We have characterized both azine and imine-linked versions of these COFs, named COFamide-1 and -2, respectively, for their surface areas, pore sizes and crystallinity. In addition to these more conventional characterization methods, we also used variable temperature infrared spectroscopy (VT-IR) methods and van der Waals density functional calculations to directly observe the presence of hydrogen bonding.

Keywords

covalent organic frameworks
hydrogen bonding

Supplementary materials

Title
Description
Actions
Title
UTDallas-SI
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.