Direct Imaging of Correlated Defect Nanodomains in a Metal-Organic Framework

25 March 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Defect engineering can enhance key properties of metal-organic frameworks (MOFs). Tailoring the distribution of defects, for example in correlated nanodomains, requires characterization across length scales. However, a critical nanoscale characterization gap has emerged between the bulk diffraction techniques used to detect defect nanodomains and the sub-nanometre imaging used to observe individual defects. Here, we demonstrate that the emerging technique of scanning electron diffraction (SED) can bridge this gap. We directly image defect nanodomains in the MOF UiO-66(Hf) over an area of ca. 1 000 nm and with a spatial resolution ca. 5 nm to reveal domain morphology and distribution. Based on these observations, we suggest possible crystal growth processes underpinning synthetic control of defect nanodomains. We also identify likely dislocations and small angle grain boundaries, illustrating that SED could be a key technique in developing the potential for engineering the distribution of defects, or “microstructure”, in functional MOF design.

Keywords

Metal Organic Frameworks (MOFs)
Electron Microscopy
Scanning Electron Diffraction
Defects
Defect-Engineering
UiO-66
Modulated Synthesis

Supplementary materials

Title
Description
Actions
Title
SI for Imaging Defect Domains UiO-66 SI
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.