Assembly of a Patchy Protein into Variable 2D Lattices via Tunable, Multiscale Interactions

23 March 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Self-assembly of molecular building blocks into higher-order structures is exploited in living systems to create functional complexity and represents a powerful synthetic strategy for constructing new materials. As nanoscale building blocks, proteins offer unique advantages, including monodispersity and atomically tunable interactions. Yet, control of protein self-assembly has been limited compared to that of inorganic or polymeric nanoparticles, which lack such attributes. We report modular self-assembly of an engineered protein into four physicochemically distinct, precisely patterned 2D crystals via control of four classes of interactions acting locally, regionally and globally. We relate the resulting structures to the underlying free-energy landscape by combining in-situ atomic force microscopy observations of assembly with thermodynamic analyses of protein-protein and -surface interactions. Our results demonstrate rich phase behavior obtainable from a single, highly-patchy protein when interactions acting over multiple length scales are exploited and predict new bulk-scale properties for protein based materials that ensue from such control.

Keywords

Self-Assembly
Biomaterials
Protein Design
Surface/Interfacial Self-Assembly
Atomic Force Microscopy
Multi-scale interactions
Dipole Interactions
Molecular Dynamics Simulations
Piezoelectric Materials

Supplementary materials

Title
Description
Actions
Title
SI Final
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.