Abstract
Natural polysaccharides (such as cellulose) comprise a large bio-renewable resource. However, exploitation of this resource requires energy-efficient polysaccharide degradation, which is currently limited by the inherent recalcitrance of many naturally occurring polysaccharides. Catalytic breakdown of polysaccharides can be achieved more efficiently by means of the enzymes lytic polysaccharide monooxygenases (LPMOs). However, the LPMO mechanism has remained controversial, preventing full exploitation of their potential. One of the controversies has centered around an active site tyrosine, present in most LPMOs. Different roles for this tyrosine have been proposed without direct evidence, but two recent investigations have for the first time obtained direct (spectroscopic) evidence for that chemical modification of this tyrosine is possible. Surprisingly, the spectroscopic features obtained in the two investigations are remarkably different. In this paper we use density functional theory (DFT) in a QM/MM formulation to reconcile these (apparently) conflicting results. By modeling the spectroscopy as well as the underlying reaction mechanism we can show how formation of two isomers (both involving deprotonation of tyrosine) explain the difference in the experimental observed spectroscopic features. The link between our structures and the observed spectroscopy provides a firm ground to investigate the role of tyrosine.
Supplementary materials
Title
MJB1 aina project paper v5 SI
Description
Actions