Mapping Solvation Heterogeneity in Live Cells by Hyperspectral Stimulated Raman Scattering Microscopy

09 March 2020, Version 2
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Water provides a dynamic matrix in which all biochemical processes occur in living organisms. The structure and dynamics of intracellular water constitute the cornerstone for understanding all aspects of cellular function. Fundamentally, direct visualization of subcellular solvation heterogeneity is essential but remains challenging with commonly used NMR methods due to poor spatial resolution. To explore this question, we demonstrate a vibrational-shift imaging approach by combining the spectral-focusing hyperspectral stimulated Raman scattering (hsSRS) technique with an environmentally-sensitive nitrile probe. The sensing ability of a near-infrared nitrile-containing molecule is validated in the solution phase, microscopic droplets and cellular environments. Finally, we quantitatively measure the subcellular solvation variance between the cytoplasm (29.5%, S.E. 1.8%) and the nucleus (57.3%, S.E. 1.0%), which is in good agreement with previous studies. This work sheds light on heterogenous solvation in live systems using coherent Raman microscopy and opens up new avenues to explore environmental variance in complex systems with high spatiotemporal resolution.

Keywords

Intracellular water
Stimulated Raman Scattering Microscopy

Supplementary materials

Title
Description
Actions
Title
hsSRS SI
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.