Estimation of Effective Parameters for the Transition-Metal Complexes by Mapping Self-Interaction Correction onto GGA+U

12 March 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

We propose a method to calculate the Hubbard U parameter in GGA+U or the α pa
rameter in the atomic self-interaction correction (ASIC) scheme for transition-metal
d orbitals by mapping the self-interaction correction (SIC) onto GGA+U, which is
suitable for atom-centered basis sets. SIC can offer a substitute for the Hubbard
U parameter in GGA+U, although its usage should be limited considering the dif
ferences between GGA+U and SIC. Approximations to reduce computational cost
for self-interaction (SI) corrected localized orbitals are deduced from the properties
of the unitary transformation in SIC and the atomic likeness of molecular orbitals
dominated by transition-metal d orbitals, and the parameters are obtained from the
approximate forms of the localized orbitals. First-row transition-metal complexes
were tested, and the results are comparable to experimental measurements and pre
vious calculations. Our method does not guarantee better results than those of
the linear response method or hybrid functionals, but mapping from SIC suppresses
overestimation of the U parameter to obtain proper geometries and energies for Fe
porphyrin-imidazole, Fe-porphyrin-CO and FeO2 modeling

Keywords

atom-centered basis sets

Supplementary materials

Title
Description
Actions
Title
FePCO
Description
Actions
Title
FePIm
Description
Actions
Title
JHParq manuscript r
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.