Enantioselective Intramolecular Allylic Substitution via Synergistic Palladium/Chiral Phosphoric Acid Catalysis: Insight into Stereoinduction through Statistical Modeling


The mode of asymmetric induction in an enantioselective intramolecular allylic substitution reaction catalyzed by a combination of palladium and a chiral phosphoric acid was investigated by a combined experimental and statistical modeling approach. Experiments to probe nonlinear effects, the reactivity of deuterium-labeled substrates, and control experiments revealed that the chiral phosphate anion is involved in stereoinduction. Using multivariable linear regression analysis, we identified that the presence of multiple noncovalent interactions with the chiral environment of the phosphate anion are integral to enantiocontrol in the transition state. The synthetic protocol to form chiral pyrrolidines was further applied to the asymmetric construction of C−O bonds at fully-substituted carbon centers in the synthesis of chiral 2,2-disubstituted benzomorpholines.


Supplementary material

DAP AllylSubst SI