Assessment of Surface Water Quality Using Multivariate Statistical Techniques: A Case Study of Saigon River

09 March 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Analysis and management of surface water quality is a need for many economic and production fields, but requires much time and forces. Multivariate statistical algorithms are applied to the dataset, which made up from 19 water quality criteria collected from 10 sampling sites across waterways from Sai Gon river basin. PCA-X (PCA – Principle Component Analysis) model of the dataset provides grouping by geographical location and flow direction, with explanation of the first 2 principal components are 62.4 and 25.2 %, respectively, which overviews the quality of water of these sampling sites, and allows determination of unexpected pollution sources from the system. These results are the basis of developing a method for delimiting and securing local pollution sites, assisting water quality monitoring and environmental management.

Keywords

multivariate
water quality
environment
pollution control
Sai Gon river

Supplementary weblinks

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.