Stable Isotope-Assisted Metabolomics for Deciphering Xenobiotic Metabolism in Mammalian Cell Culture

26 February 2020, Version 2
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

We present a workflow based on stable isotope-assisted metabolomics and the bioinformatics tool MetExtract II for deciphering xenobiotic metabolites produced by human cells. Its potential was demonstrated by the investigation of the metabolism of deoxynivalenol (DON), an abundant food contaminatn, in a liver cracinoma cell line (HeoG2) and a model for colon carcinoma (HT29). Detected known metabolites included DON-3-sulfate, DON-10-sulfonate, and DON-10-glutathione as well as DON-cysteine. Conjugation with amino acids and antibiotics was confirmed for the first time. The approach allows the untargeted elucidation of human xenobiotic products in tissue culture.

Keywords

Biotransformation Pathways
Secondary metabolites
tissue culture models
exposomics
Liquid chromatography-mass spectrometry
food safety control
TOXICOLOGY

Supplementary weblinks

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.