Insight Derived from Molecular Docking and Molecular Dynamics Simulations into the Binding Interactions Between HIV-1 Protease Inhibitors and SARS-CoV-2 3CLpro

05 March 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

A novel severe acute respiratory syndrome coronavirus (SARS-CoV-2) was identified from respiratory illness patients in Wuhan, Hubei Province, China, which has recently emerged as a serious threat to the world public health. Hower, no approved drugs have been found to effectively inhibit the virus. Since it has been reported that the HIV-1 protease inhibitors can be used as anti-SARS drugs by tegarting SARS-CoV 3CLpro, we choose six approved anti-HIV-1 drugs to investigate their binding interactions between 3CLpro, and to evaluate their potential to become clinical drugs for the new coronavirus pneumonia (COVID19) caused by SARS-CoV-2 infection. The molecular docking results indicate that, the 3CLpro of SARS-CoV-2 has a higher binding affinity for all the studied inhibitors than its SARS homologue. Two docking complexes (indinavir and darunavir) with high docking scores were futher subjected to MM-PBSA binding free energy calculations to detail the molecular interactions between these two proteinase inhibitors and the 3CLpro. Our results show that darunavir has the best binding affinity with SARS-CoV-2 and SARS-CoV 3CLpro among all inhibitors, indicating it has the potential to become an anti-COVID-19 clinical drug. The likely reason behind the increased binding affinity of HIV-1 protease inhibitors toward SARS-CoV2 3CLpro than that of SARS-CoV were investigated by MD simulations. Our study provides insight into the possible role of structural flexibility during interactions between 3CLpro and inhibitors, and sheds light on the structure-based design of anti-COVID-19 drugs targeting the SARS-CoV-2 3CLpro.


Keywords

computational biology/molecular dynamics

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.