A Semiconductive and Microporous One-Dimensional Tubular Metal-Organic Framework

04 March 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

We report the first one-dimensional tubular metal-organic framework (MOF) [Ni(Cu-H6TPPA)]∙2DMA (H8TPPA = 5,10,15,20-tetrakis[p-phenylphosphonic acid] porphyrin) in the literature. The structure of this MOF, known as GTUB4, was solved using single crystal X-ray diffraction and its surface area was calculated to be 1102 m2/g, making it the phosphonate MOF with the highest reported surface area. GTUB4 also possesses a narrow indirect band gap of 1.9 eV and a direct band gap of 2.16 eV, making it a semiconducting MOF. Thermogravimetric analysis of GTUB4 suggests that it is thermally stable up to 400°C. Owing to its high surface area, low band gap, and thermal stability, GTUB4 could find applications as electrodes in supercapacitors.

Keywords

Semiconductive MOFs
MOF synthesis
MOF design
Ligand Design
Ligand Synthesis

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.