Artificially Produced UV Light and Challenging Photoreactions Enabled by Upconversion in Water

02 March 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Sensitized triplet-triplet annihilation is the most promising mechanism for pooling the energy of two visible photons, but its applications in solution were so far limited to organic solvents, with a current maximum of the excited-singlet state energy of 3.6 eV. By combining tailor-made iridium complexes with naphthalenes, we demonstrate blue-light driven upconversion in water with unprecedented singlet-state energies approaching 4 eV. The annihilators have outstanding excited-state reactivities enabling challenging photoreductions driven by sTTA. Specifically, we found that an aryl-bromide bond activation can be achieved with blue photons, and we obtained full conversion for the very energy-demanding decomposition of a persistent ammonium compound as typical water pollutant, not only with a cw laser but also with an LED light source. These results provide the first proof-of-concept for the usage of low-power light sources for challenging reactions employing blue-to-UV upconversion in water, and pave the way for the further development of sustainable light-harvesting applications.

Keywords

Upconversion
Photoredox Catalysis
Green Chemistry
Photochemistry

Supplementary materials

Title
Description
Actions
Title
Blue to-UV upconversion SI Pfund et al V1
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.