On the Performances of Density Functionals for Open Shell First-Row Transition Metal Compounds

25 February 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The selection of density functional is the key to obtain useful results in a computational work. Due to their complexity in terms of electronic structures, open-shell first-row transition metal complexes are difficult to be correctly described by most functionals. In this work, totally 19 reactions involving V, Cr, Mn, Fe, Co, Ni complexes, either monometallic or bimetallic, were used as testing set for 18 functionals ranging from generalized gradient approximation (GGA) to doubly-hybrid functionals, with experimental electron affinities and ligand association energies as standard. It is shown that for monometallic complexes PBE0-D3BJ and B3LYP-D3BJ perform the best, whereas MN15 and MN15L are the optimal functionals for bimetallic compounds. On the other hand, the accuracy of DLPNO-CCSD(T) is not significantly better than the best-performing functionals, and the use of doubly-hybrid functionals is risky.

Keywords

Benchmark
DFT
Computational Chemistry
Transition metal

Supplementary materials

Title
Description
Actions
Title
SI
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.