Abstract
The increasingly worrisome situation of antimicrobial resistances has pushed synthetic chemists to design original molecules that can fight these resistances. To do so, inhibiting β-lactamases, one of the main modes of resistance to β-lactam antibiotics, is one of the most sought-after strategies, as recently evidenced by the development and approval of avibactam, relabactam and vaborbactam. Yet molecules able to inhibit simultaneously β-lactamases belonging to different molecular classes remain scarce and currently there is no metallo-β-lactamase inhibitor approved for clinical use. Having recently developed a synthetic methodology to access imino-analogues of β-lactams (Chem. – Eur. J. 2017, 23, 12991,see ref) we decided to evaluate them as potential β-lactamase inhibitors and specifically against carbapenemases, which can hydrolyze and inactivate penicillins, cephalosporins and carbapenems. Herein we eport our findings that show that our newly developed family of molecules are indeed excellent β-lactamase inhibitors and that our lead compound can inhibit NDM-1 (0.1 µM), KPC-2 (0.4 µM), and OXA-48 (0.6 µM) even though these three enzymes belong to three different molecular classes of carbapenemases. This lead compound also inhibits the ESBL CTX-M-15 and the cephalosporinase CMY-2, it is metabolically stable, and can repotentiate imipenem against a resistant strain of Escherichia coli expressing NDM-1.
Supplementary materials
Title
SupplementaryAZETI-ChemRxiv
Description
Actions