The Role of Electrostatics in Enzymes: Do Biomolecular Force Fields Reflect Protein Electric Fields?

25 February 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Preorganization of large, directionally oriented, electric fields inside protein active sites has been proposed as a crucial contributor to catalytic mechanism in many enzymes, and may be efficiently investigated at the atomistic level with molecular dynamics simulations. Here we evaluate the ability of the AMOEBA polarizable force field, as well as the additive Amber ff14SB and Charmm C36m models, to describe the electric fields present inside the active site of the peptidyl-prolyl isomerase cyclophilin A. We compare the molecular mechanical electric fields to those calculated with a fully first principles quantum mechanical (QM) representation of the protein, solvent, and ions, and find that AMOEBA consistently shows far greater correlation with the QM electric fields than either of the additive force fields tested. Catalytically-relevant fields calculated with AMOEBA were typically smaller than those observed with additive potentials, but were generally consistent with an electrostatically-driven mechanism for catalysis. Our results highlight the accuracy and the potential advantages of using polarizable force fields in systems where accurate electrostatics may be crucial for providing mechanistic insights.

Keywords

Molecular dynamics
Polarizable force fields
Electric fields
Biophysics
Enzyme catalysis

Supplementary materials

Title
Description
Actions
Title
Bradshaw Dziedzic SI
Description
Actions
Title
Supplementary movie 1
Description
Actions
Title
Supplementary movie 2
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.