Is Domain Knowledge Necessary for Machine Learning Materials Properties?

21 February 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

New methods for describing materials as vectors in order to predict their properties using machine learning are common in the field of material informatics. However, little is known about the comparative efficacy of these methods. This work sets out to make clear which featurization methods should be used across various circumstances. Our findings include, surprisingly, that simple one-hot encoding of elements can be as effective as traditional and new descriptors when using large amounts of data. However, in the absence of large datasets or data that is not fully representative we show that domain knowledge offers advantages in predictive ability.

Keywords

machine learning
materials informatics
featurization
neural networks
descriptors

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.