A Systematic Method for Predictive in-silico Chemical Vapour Deposition

12 February 2020, Version 2

Abstract

A comprehensive systematic method for chemical vapour deposition modelling consisting of seven well defined steps is presented. The method is general in the sense that it is not adapted to a certain type of chemistry or reactor configuration. The method is demonstrated using silicon carbide (SiC) as model system, with accurate matching to measured data without tuning of the model. We investigate the cause of several experimental observations for which previous research only have had speculative explanations. In contrast to previous assumptions, we can show that SiCl2 does not contribute to SiC deposition. We can confirm the presence of larger molecules at both low and high C/Si ratios, which have been thought to cause so-called step-bunching. We can also show that high concentrations of Si lead to other Si molecules than the ones contributing to growth, which also explains why the C/Si ratio needs to be lower at these conditions to maintain high material quality as well as the observed saturation in deposition rates. Due to its independence of chemical system and reactor configuration, the method paves the way for a general predictive CVD modelling tool.

Content

Supplementary materials

A method for in-silico Chemical Vapour Deposition Supplementary material rev1

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.