Seeing is Believing: Experimental Spin States from Machine Learning Model Structure Predictions

21 February 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Determination of ground-state spins of open-shell transition metal complexes is critical to understanding catalytic and materials properties but also challenging with approximate electronic structure methods. As an alternative approach, we demonstrate how structure alone can be used to guide assignment of ground-state spin from experimentally determined crystal structures of transition metal complexes. We first identify the limits of distance-based heuristics from distributions of metal–ligand bond lengths of over 2,000 unique mononuclear Fe(II)/Fe(III) transition metal complexes. To overcome these limits, we employ artificial neural networks (ANNs) to predict spin-state-dependent metal–ligand bond lengths and classify experimental ground state spins based on agreement of experimental structures with the ANN predictions. Although the ANN is trained on hybrid density functional theory data, we exploit the method-insensitivity of geometric properties to enable assignment of ground states for the majority (ca. 80-90%) of structures. We demonstrate the utility of the ANN by data-mining the literature for spin-crossover (SCO) complexes, which have experimentally-observed temperature-dependent geometric structure changes, by correctly assigning almost all (> 95%) spin states in the 46 Fe(II) SCO complex set. This approach represents a promising complement to more conventional energy-based spin-state assignment from electronic structure theory at the low cost of a machine learning model.

Keywords

spin crossover
artificial neural networks
spin state prediction
transition metal complexes
iron
density functional theory

Supplementary materials

Title
Description
Actions
Title
ANN StructurePrediction TOC
Description
Actions
Title
SI ANNStrucInv v5
Description
Actions
Title
SI Data
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.