Modeling the Alkaline Hydrolysis of Diaryl Sulfate Diesters: A Mechanistic Study

20 February 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Phosphate and sulfate esters have important roles as biological building blocks and in regulating cellular processes. However, while there has been substantial experimental and computational investigation of the mechanisms and the transition states involved in phosphate ester hydrolysis, there is far less (in particular computational) work on sulfate ester hydrolysis. Here, we report a detailed computational study of the alkaline hydrolysis of diaryl sulfate diesters, using different DFT functionals and both pure implicit solvation as well as mixed implicit/explicit solvation with varying numbers of explicit water molecules. We consider both the impact of how the system is modeled on computed linear free energy relationships (LFER) and the nature of the transition states. Although our calculations consistently underestimate the absolute activation free energies, we obtain good agreement with experimental LFER data when using pure implicit solvent, and excellent agreement with experimental kinetic isotope effects for all models used. Our calculations suggest that the hydrolysis of sulfate diesters proceeds through loose transition states, with minimal bond formation to the nucleophile and with bond cleavage to the leaving group already initiated. Comparison to prior work indicates that these transition states are similar in nature to those of analogous reactions such as the alkaline hydrolysis of neutral arylsulfonate monoesters or charged phosphate diesters and fluorophosphates. Obtaining more detailed insight into the transition states involved assists in understanding the selectivity of enzymes that hydrolyze these reactions; however, this work also highlights the methodological challenges involved in reliably modeling sulfate ester hydrolysis.

Keywords

sulfate diester hydrolysis
reaction mechanisms
density functional theory
Linear Free Energy Relationships
mixed implicit/explicit solvation

Supplementary materials

Title
Description
Actions
Title
Kamerlin SupportingInformation
Description
Actions
Title
CartesianCoordinates
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.