Catalytic Synthesis of 8-Membered Ring Compounds via Cobalt(III)-Carbene Radicals

20 February 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The metalloradical activation of o-aryl aldehydes with cobalt(II) porphyrin complexes as catalysts produces cobalt(III)-carbene radical intermediates, providing a novel and powerful strategy for the synthesis of medium-sized ring structures. Herein we make use of the intrinsic radical-type reactivity of cobalt(III)-carbene radical intermediates in the [CoII(TPP)]-catalyzed (TPP = tetraphenylporphyrin) synthesis of two types of 8 membered ring compounds; novel dibenzocyclooctenes and unique monobenzo-cyclooctadienes. The method was successfully applied to a variety of substrates, producing several 8-membered ring compounds in good yields and with excellent substituent tolerance. DFT calculations and experimental results suggest that the reactions proceed via initial hydrogen atom transfer from the bis-allylic/benzallylic C-H bond to the carbene radical moiety, followed by two divergent processes for ring-closure to the two different types of 8-membered ring products. While the dibenzocyclooctenes are formed by dissociation of o quinodimethanes (o-QDMs) from the catalyst that undergo an uncatalyzed ring-closure reaction involving 8-pi-cyclisation, DFT calculations suggest that ring-closure to the monobenzocyclooctadienes involves a radical-rebound step in the coordination sphere of cobalt. The latter mechanism implies that unprecedented enantioselective ring-closure reactions to chiral benzocyclooctadienes should be possible, as was confirmed for reactions mediated by a chiral cobalt-porphyrin catalyst.

Keywords

carbene radicals
cobalt ions
dibenzocyclooctenes
monobenzocyclooctadienes
metalloradicals
radical-rebound
o-quinodimethanes

Supplementary materials

Title
Description
Actions
Title
SI B ChemRxiv
Description
Actions
Title
Optimized geometries ChemRxiv
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.