Advancement of Actinide Metal-Organic Framework Chemistry via Synthesis of Pu-UiO-66

20 February 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

We report the synthesis and characterization of the first plutonium metal-organic framework (MOF). Pu-UiO-66 expands the established UiO-66 series, which includes transition-metal, lanthanide, and early actinide elements in the hexanuclear nodes. The thermal stability and porosity of Pu-UiO-66 were experimentally determined and multi-faceted computational methods were used to corroborate experimental values, examine inherent defects in the framework and decipher spectroscopic signatures. The crystallization of a plutonium chain side product provides direct evidence of the competition that occurs between modulator and linker in MOF syntheses. Ultimately, the synthesis of Pu-UiO-66 demonstrates adept control of Pu(IV) coordination under hydrolysis-prone conditions, provides an opportunity to extend trends across isostructural UiO-66 frameworks and serves as the foundation for future plutonium MOF chemistry.

Keywords

actinides
computational chemistry
metal-organic frameworks
microporous materials
plutonium(IV)

Supplementary materials

Title
Description
Actions
Title
PuMOF - SI - SUBMITTED
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.