Autonomous Intelligent Agents for Accelerated Materials Discovery

19 February 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


We present an end-to-end computational system for autonomous materials discovery. The system aims for cost-effective optimization in large, high-dimensional search spaces of materials by adopting a sequential, agent-based approach to deciding which experiments to carry out. In choosing next experiments, agents can make use of past knowledge, surrogate models, logic, thermodynamic or other physical constructs, heuristic rules, and different exploration-exploitation strategies. We show a series of examples for (i) how the discovery campaigns for finding materials satisfying a relative stability objective can be simulated to design new agents, and (ii) how those agents can be deployed in real discovery campaigns to control experiments run externally, such as the cloud-based density functional theory simulations in this work. In a sample set of 16 campaigns covering a range of binary and ternary chemistries including metal oxides, phosphides, sulfides and alloys, this autonomous platform found 383 new stable or nearly stable materials with no intervention by the researchers.


materials discovery pipeline
Artificial Intelligence research
Inorganic Materials
Autonomous Science
Active Learning Methodologies


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.