A Single and Two-Stage, Closed-Tube, Molecular Test for the 2019 Novel Coronavirus (COVID-19) at Home, Clinic, and Points of Entry

19 February 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


The 2019 novel coronavirus (COVID-19) is a newly emerged strain that has never been found in humans before. At present, the laboratory-based reverse transcription-polymerase chain reaction (RT-PCR) is the main method to confirm COVID-19 infection. The intensification of the COVID-19 epidemic overwhelms limited clinical resources in particular, but not only, in developing countries, resulting in many patients not being tested for the infection and in large queues of potentially infected individuals waiting to be tested while providing a breeding ground for the disease. We describe here a rapid, highly sensitive, point-of-care, molecular test amenable for use at home, in the clinic, and at points of entry by minimally trained individuals and with minimal instrumentation. Our test is based on loop mediated isothermal amplification (COVID-19 LAMP) and for higher sensitivity on nested nucleic acid, two stage isothermal amplification (COVID-19 Penn-RAMP). Both tests can be carried out in closed tubes with either fluorescence or colorimetric (e.g., leuco crystal violet LCV) detection. COVID-19 LAMP performs on par with COVID-19 RT-PCR. COVID-19 RAMP has 10 fold better sensitivity than COVID-19 LAMP and COVID-19 RT-PCR when testing purified targets and 100 times better sensitivity than COVID-19 LAMP and COVID-19 RT-PCR when testing rapidly prepared sample mimics. Due to fortunate scarcity of COVID-19 infections in the USA, we were not able to test our assays and methods with patient samples. We hope that such tests will be carried out by colleagues in impacted countries. Our Closed-Tube Penn-RAMP has the potential to significantly reduce false negatives while being amenable to use with minimal instrumentation and training.


Isothermal amplification
Two stage,
nested amplification


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.