Rapid Identification of Potential Inhibitors of SARS-CoV-2 Main Protease by Deep Docking of 1.3 Billion Compounds

19 February 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The recently emerged 2019 Novel Coronavirus (SARS-CoV-2) and associated COVID-19 disease cause serious or even fatal respiratory tract infection and yet no FDA-approved therapeutics or effective treatment is currently available to effectively combat the outbreak. This urgent situation is pressing the world to respond with the development of novel vaccine or a small molecule therapeutics for SARS-CoV-2. Along these efforts, the structure of SARS-CoV-2 main protease (Mpro) has been rapidly resolved and made publicly available to facilitate global efforts to develop novel drug candidates.
In recent month, our group has developed a novel deep learning platform – Deep Docking (DD) which enables very fast docking of billions of molecular structures and provides up to 6,000X enrichment on the top-predicted ligands compared to conventional docking workflow (without notable loss of information on potential hits). In the current work we applied DD to entire 1.3 billion compounds from ZINC15 library to identify top 1,000 potential ligands for SARS-CoV-2 Mpro. The compounds are made publicly available for further characterization and development by scientific community.

Keywords

COVID-19
deep learning
virtual screening
protease inhibitors

Supplementary materials

Title
Description
Actions
Title
SM 1
Description
Actions
Title
SM 2
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.