Supramolecular Assembly of U(IV) Clusters and Superatoms

19 February 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Superatoms are nanometer-sized molecules or particles that can form ordered lattices, mimicking their atomic counterparts. Hierarchical assembly of superatoms gives rise to emergent properties in superlattices of quantum-dots, p-block clusters, and fullerenes. Here, we introduce a family of uranium-oxysulfate cluster anions whose hierarchical assembly in water is controlled by two parameters; acidity and the countercation. In acid, larger LnIII (Ln=La-Ho) link hexamer (U6) oxoclusters into body-centered cubic frameworks, while smaller LnIII (Ln=Er-Lu &Y) promote linking of fourteen U6-clusters into hollow superclusters (U84 superatoms). U84 assembles into superlattices including cubic-closest packed, body-centered cubic, and interpenetrating networks, bridged by interstitial countercations, and U6-clusters. Divalent transition metals (TM=MnII and ZnII), with no added acid, charge-balance and promote the fusion of 10 U6 and 10 U-monomers into a wheel–shaped cluster (U70). Dissolution of U70 in organic media reveals (by small-angle Xray scattering) that differing supramolecular assemblies are accessed, controlled by TM-linking of U70-clusters.


tetravalent uranium
small-angle X-ray scattering

Supplementary materials

SI for ColliardNyman 2020


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.