A New Benchmark Set for Excitation Energy of Charge Transfer States: Systematic Investigation of Coupled-Cluster Type Methods

18 February 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


There are numerous publications on benchmarking quantum chemistry methods for excited states. These studies rarely include Charge Transfer (CT) states although many interesting phenomena in e.g. biochemistry and material physics involve transfer of electron between fragments of the system. Therefore, it is timely to test the accuracy of quantum chemical methods for CT states, as well. In this study we first suggest a set benchmark systems consisting of dimers having low-energy CT states. On this set, the excitation energy has been calculated with coupled cluster methods including triple excitations (CC3, CCSDT-3, CCSD(T)(a)* ), as well as with methods including full or approximate doubles (CCSD, STEOM-CCSD, CC2, ADC(2), EOM-CCSD(2)). The results show that the popular CC2 and ADC(2) methods are much more inaccurate for CT states than for valence states. On the other hand, CCSD seems to have similar systematic overestimation of the excitation energies for both valence and CT states. Concerning triples methods, the new CCSD(T)(a)* method including non-iterative triple excitations preforms very well for all type of states, delivering essentially CCSDT quality results.


excited states
charge transfer states
coupled cluster theory


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.