Rationalizing the diverse reactivity of [1.1.1]propellane through sigma-pi-delocalization

07 February 2020, Version 2
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

[1.1.1]Propellane has gained increased attention due to its utility as a precursor to bicyclo[1.1.1]pentanes (BCPs) – motifs of high value in pharmaceutical and materials research – by addition of nucleophiles, radicals and electrophiles across its inter-bridgehead C–C bond. However, the origin of this broad reactivity profile is not well-understood. Here, we present a comprehensive computational study that attributes the omniphilicity of [1.1.1]propellane to a moldable, delocalized electron density, characterized by the mixing of the inter-bridgehead C–C bonding and antibonding orbitals. Reactions with anions and radicals are facilitated by stabilization of the adducts through sigma-pi-delocalization of electron density over the cage, while reactions with cations involve charge transfer that relieves Pauli repulsion inside the cage. These results provide a unified framework to rationalize propellane reactivity, opening up opportunities for the exploration of new chemistry of [1.1.1]propellane and related strained systems.

Keywords

[1.1.1]propellane
strain
omniphilicity
coupled cluster
density functional theory
pi-delocalization

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.